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Ahstract We consider the Hopfield model of neural networks m whch the pottems. as well 3s 
the spins, are dynamical variables. The eh3Iacteristic time scaler of the dynamics of the rptns 
and the pattems are assumed to be widely separated such that the spins Completely equilibrate at 
the time scale at which the elementary changes in the panems take place. We sNdy the situation 
in which each type of variable thermalizes at different temperamTes, respectively, T and T’.  In 
this case. such a system is described m t e m  of the traditional replica formalism in which the 
number of rtp1ica.s n = TIT‘ is still the finite p m e t e r .  

The complete phase diagram of the model in the space of the parameters T, a and n is 
obtzned. If the parameter n is negative, the model is argued to pment some similarities with 
the unlearning training algorithm. In this c s e  a substantial increase in size of the retrleval phase 
in the plane (T, e) is found. 

1. Introduction 

In the physics of disordered materials, the degrees of freedom describing an actual system are 
usually well separated into two essentially different types: the ‘annealed’ or ’dynamical’ 
variables in terms of which the statistical mechanics is calculated; and the ‘quenched’ 
variables which enter the statistical mechanics as the fixed parameters. A traditional problem 
is then to calculate the self-averaging thermodynamic quantities, like the free energy, which 
require averaging over the statistical distribution of the quenched variables. At this second 
step, the quenched degrees of freedom are effectively ‘annealed’ (at infinite time scale), 
provided that their statistics is not affected by the annealed degrees of freedom. This is the 
typical situation for spin-glasses and statistical models of neural networks where, for the 
actual calculations, the so-called replica formalism is used (see e.g. [l]). 

Here, we consider the specific situation in which the originally quenched variables are 
taken to be somewhat intermediate between the ‘quenched’ and ‘annealed’ cases. They 
are considered to be ‘slow’ dynamical variables evolving at a time scale which is much 
larger than the thermal-equilibration time of the annealed degrees of freedom. In this case, 
it would be natural to expect the dynamics of the slow variables to be described by the 
‘heat bath’ random process in which the role of the effective potential is played by the free 
energy of the thermally equilibrated fast variables. 

In what follows. we study the situation in which both the fast as well as the slow 
variables are at thermal equilibrium but at different temperatures. In this case, the two 
types of degrees of freedom are not mutually equilibrated (they relate to two different 
thermal baths). 

Let us consider a system described by some Hamiltonian H [ f ;  U ]  which depends on 
the fast variables {U;] and the slow variables 5 .  For the free energy of such a system with 
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a given fixed realization of the (s, one gets 
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1 
FBI = --logZ[$] B 

where 

is the partition function. 
If the e’s change their values on a time scale which is much larger than the equilibration 

time of the U’S, the statistics of these fast variables is described by the free energy (1) where 
the e’s  remain effectively quenched. Then, this free energy becomes the energy function 
(the Hamiltonian) for the e ’s  degrees of freedom. The space in which the variables 6 
exist should be specified separately. In the quenched case, this space is defined by some 
statistical distribution function PB]. In the partially annealed case, this function P [ e ]  has 
the meaning of an internal potential for the 6’s. which restricts the space of their values. 

If the fast and slow degrees of freedom are not thermally equilibrated, such that the 
slow variables have temperature T’ which is different from the temperature T of the fast 
variables, then for the total partition function of the system, one gets 

2 = J ~t PIBI ~ ~ ( - B ‘ F I F I )  = J 04 PI$] exp ($log Z I ~ I )  = J DE PIEJ(ZI~IY 

(3) 

where n = T / T ‘ .  Correspondingly, the total free energy of the system is 

F = -T’log((((Zl$l)“))l (4) 

where 

In this way, we recover the well known replica formalism in which the ‘number of 
replicas’ n = T/T‘ remains afnite parameter. 

From the point of view of the partial annealing considered here, the quenched case 
corresponds to the l i t  of the infinite temperature T’ of the slow variables. In this case, 
the thermodynamics of the fast degrees of freedom produces no effect on the distribution 
of the slow ones. If T‘ = T (n = l), we get the trivial case of purely annealed disorder 
whatever the difference in the characteristic time scales of the 8 s  and us is. 

In the case of partial equilibrium n # 0 and n # 1, the evolution of the slow variables 
could be described by a Langevin type stochastic dynamics 

where ( (q ( t )q ( t ’ ) ) )  = 2T‘S(t - t’) and the ‘microscopic’ time q of the E’s dynamics is 
assumed to be much larger than the thermal-equilibration time of the fast variables U. 
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The above physical interpretation of replicas has been proposed by Penney et a1 [2], 
who studied the case of positive n in the SK model of spin-glasses [3], and by Dotsenko 
etal [4] who studied replica-symmetry breaking in the Shemngton-Kirkpatrick (SK) model 
and retrieval properties in neural networks for negative and positive n. 

In this paper, we are going to study the Hopfield neural networks [5 ]  for positive and 
negative values of the parameter n. Traditionally, the quenched variables in neural networks 
are the stored king 'pattems'. Partial annealing here means that the stored pattems become 
(slow) dynamical variables. Although neural networks with moving patterns look a bit 
tricky at first sight, we believe that it does make sense to remember the various 'training' 
procedures (see e.g. [6] )  for modifying the synaptic interactions. 

In the case of a negative value for the temperature T', the situation, to a certain extent, 
is reminiscent of the unleaming algorithm [7]. In the original formulation, this algorithm 
defines the discretetime evolution of the spin-spin couplings Jij in the form 

where E is some (numerically) small positive parameter and [ U * ]  is taken at a random spin 
configuration corresponding to one of the energy minima at given values of the coupligs 
J; j ( t ) .  The point is that the above modification of the couplings (with the chosen sign of 
E )  makes the corresponding energy minima higher and, in general, the couplings evolve 
towards marimum energy. Taking the Hebb learning rule (1 1) for the initial couplings at 
t = 0, it was demonstrated that (presumably) due to the reduction in the noisy interference 
effects among the patterns, the above training procedure provides substantial increase in the 
storage capacity or,. 

On the other hand, considering the unlearning dynamics in a generalized form, namely, 
introducing finite temperature in the spin system and also finite thermal noise for the 
modification of the Jij's  at each iteration step, one obtains the following (discrete-time) 
dynamics 

or 

Here, the thermal average (. . . ) J ( f ] , T  and the free energy F [ J ( r ) ,  TI are obtained for given 
values of the couplings J i j ( t )  and spin temperature T, and q i j f t )  is the thermal white noise: 
(q i j ( t )qa l ( t ' ) )  = ZT'8(ij, .(kl,S(t - t'). Equations (9) define the Langevin dynamics in the 
space of the spin couplings with the driving potential being the free energy F [ J ( r ) .  77 
created by the thermally equilibrated spin system. The crucial point here is that according 
to equations (9). in thermal equilibrium, the system of couplings must be described by the 
corresponding Gibbs distribution with negative temperature. 

The problem, however, is that, in Hopfield neural networks with finite (negative) replica 
parameter n = T / T ' ,  the slow dynamical variables are the 'patterns' and not the synaptic 
couplings themselves (which are constrained to keep the Hebb structure in tems of the 
moving pattems). In this sense, the system considered here is not quite adequate for the 
unlearning procedure, but is only its distant analogy. Nevertheless, it exhibits interesting 
properties (section 3) and we believe that it might be valuable in its own right. 
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In particular, one finds that in the case of negative n, the patterns effectively move 
to become as orthogonal as possible. The ‘patterns’ here can be interpretcd as internal 
representations of information which, adapt thcmselves towards internal representations 
which have as little correlation as possible. At the zero temperature, this has been shown [4] 
to produce a substantial increase in the storage capacity, up to a, = 1 instead of ac = 0.14, 
in the usual Hopfield model [SI. At finite temperatures, we obtain a substantial increase in 
the size of the retrieval phase in the plane ( T ,  a). 

In the opposite case (n > 0 section 4), the ‘pattems’ move to become as parallel as 
possible. In this situation, the interference among the patterns increases, and the storage 
capacity decreases. In particular, for n > 213, the retrieval phase will be shown to disappear 
completely. Besides, at low enough temperatures (T  < n), the system breaks down into an 
unusual ‘superferromagnetic’ phase in which the overlaps of the thermodynamic state with 
all the pattems become finite (the free energy in this phase becomes proportional to N’, 
unliie the usual situation in which the free energy is of the order of N). 

The full phase diagram of the model in the space of the parameters T and the reduced 
number of the stored patterns a = P I N  for different values of the parameter n will be 
obtained. In particular, we also study the transitions into the spin-glass state which in 
the regions 1 < n < 2 and n z 2 are shown to become quite peculiar. The stability of 
the obtained replica-symmetric (retrieval and spin-glass) states with respcct to the replica- 
symmetry breaking is also studied and the corresponding Almeida-Thoulness (AI‘) lines both 
at n < 0 and n > 0 are calculated. 

2. The model 

Consider the usual Hopfield model [SI, described by a system of king spins with the 
Hamiltonian 

where 

and ($1 = f l  are the stored patterns. We consider the case where the number of stored 
patterns P is proportional to N in the thermodynamic limit N + 00 so that the parameter 
a = P I N  remains finite. 

In terms of the standard replica formalism for the replica partition function 

one gets (see, e.g. [SI) 
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In the ansatz, in which only the overlap with one pattern is macroscopically different from 
zero, the replica free energy F[m,, Q ,  i ]  is 

Here m, is the overlap with the condensed pattern 

and Q.6 is the spin-glass-order parameter 

(Q., = I), rob gives the average value of the noisy overlaps with non-condensed patterns 

2.1. Replica-symmetric solution 

In the replica-symmetric ansatz, one takes 
for all a # b 
for all a # b 

for all a 

Q.b = q 

rob = r 
m, = m 

(the diagonal elements Qoa E 1). The standard calculations [SI  result in the following 
expression for the free energy: 

F[m, q. rl = - m  + -mj?r(l - q )  + -c@rq 1 2  1 n 
2 2 2 

1 
n log(1 - j? + 84)  + - log 



4406 

2.2. Replica-symmetry breaking 

The region in which the replica-symmetric states (both the retrieval and spin-glass), defined 
by equations (21)-(23), become unstable with respect to the replica-symmetry breaking can 
be calculated in a standard way (see e.g. [ I ,  81). In our case, when the replica parameter n 
is kept finite, this region could be easily shown to be defined by the condition 

D E Feldman and V S Dotsenb  

Correspondingly, the border of this region (determined by the above equation, where the c 
sign is changed for =) defines the AT line, TA&, n).  

3. Negative n 

For a given value of the parameter n c 0, the standard calculalions of the solutions of the 
saddle-point equations (21)-(23) give the phase diagram in the space of the parameters T 
and a, qualitatively shown in figure 1. 

I RSB 

I 2 ; - - - 1 1 1 ,  Tk--_ FM 

0 05 10 0 0.5 1 0  
1b1 l.1 

Figure 1. Phase diagram of lhe model with negative value of the replica pwmeter I I :  ( a )  
In1 )> I ;  (b) In1 << I .  

3.1. Retrieval state 

This phase diagram looks similar to that of the usual Hopfield model with quenched patterns 
[SI. The essential difference, however, is that the curve of the (first-order) phase transition 
into the retrieval state (with m # 0) T&) starts from the point aYc = 1 at T = 0 and not 
from a = 0.138 as in the case of quenched patterns. This remains to be the universal point 
for any non-zero value of negative n. 

In the limit In[ >> 1 (which corresponds to the zero-temperature limit in the subsystem 
of patterns), the saddle-point equations (21)-(23) could be essentially simplified. From 
equation (23) for r one gets r e 1/(1 - C)Blnl. Then, as a result of a simple analysis 
of the Gaussian integration in equations (21) and (22), one could easily reduce the three 
equations (21)-(23) into one equation for the parameter m 

[; T - l + m *  1 m = tanh - - 
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which no longer depends on the replica parameter n. For the spin-glass order parameter one 
has q = m2. The solution of equation (25) gives the phase diagram shown in figure l(a).  

In the opposite limit In1 << 1 (figure I(b)),  in the region of the temperatures T >> In[, 
the phase diagram coincides with that of the usual Hopfield model where the line T,(LY) 
moves towards the point CY = 0.138 at low temperatures. However. in the narrow region 
T << In], this line turns quickly to the point aC = 1 anyway. Therefore, the limits T --f 0 
and In( -+ 0 do not commute in the considered system. 

The behaviour of the line T&) near the point (T = 1, LY = 0) is also similar to that of 
the usual Hopfield model 

T,(a) N 1 - r(n)& (26) 

where the coefficient 5 is some function of n. It could be easily proved that r(jn1 + 0) N 

1.95 and r(lnl -+ CO) = &. 

3.2, Replica-symmetry breaking 

The solution of equation (24) shows that in the region restricted by the lines TA&) and T,(cr) 
(figure 1) the obtained replica-symmetric solution for the retrieval state becomes unstable 
and the correct solution must be calculated in terms of the Parisi replica symmetry-breaking 
scheme [l] which we do not consider here. 

It is interesting to note that in the limit lnj --t CO, the region of the replica-symmetry 
breaking shrinks to zero near the point ( T  = I ,  a = 0) (figure l(a)). 

In the opposite limit, In[ << 1 (figure l (b)) ,  this region moves to the right and below 
the retrieval region. Here the upper branch of the AT line (at which T >> In[) coincides 
with the corresponding AT line of the usual Hopfield model. 

What is essential, however, is that in the low-temperature part of the retrieval phase 
(including the zero-temperature interval 0 < a c I), the replica-symmetric solution is stable 
for both cases In1 >> 1 and In1 << 1, unlike the situation in the usual Hopfield model and 
unlike the spin-glass solution in the considered model. 

3.3. Spin-glass state 

As in the usual Hopfield model, the spin-glass state (m = 0, q ,  r # 0) is stable everywhere 
below the second-order phase-transition line TS&) = 1 + &. In this region, according 
to equation (24), the replica symmetry appears to be broken. Therefore, the SG state should 
be described in terms of the Parisi functions q ( x )  and r ( x )  such that q(x )  and r ( x )  equal 
zero in the interval -In1 < n 4 0, while in the interval 0 < x < 1 they coincide with those 
of the spin-glass solution of the usual Hopfield model (see [4]). 

4. Positive n 

If the parameter n is positive then the phase diagram of the system becomes much more 
sophisticated. First of all, there exist several intervals for the values of n in which the phase 
diagrams are essentially different. 

The other important point is that  in the low-temperature region at T c n ,  the system 
breaks down into a new ‘superferromagnetic’ (SF) phase in which all the overlaps m p  of 
the thermodynamic state with the stored patterns t @  become finite. This can be easily seen 
from equation (23) for r in which it is obvious that, because of the factor -pnq in the 
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denominator at low enough temperatures the order parameter r will become divergent. This 
means, in turn, that the 'non-condensing' overlaps which compose r (equation (17)) are no 
Longer of order I / f i  and the other order parameters in the calculation of the free energy 
should be used. 

This can be done quite easily assuming that all the overlaps m p  are finite and equal. 
For the partition function (12), in a standard way one gets 

D E Feldnian and V S Darsenko 

Assuming replica symmetry and substituting m f  = m, after summation over the 6s and us 
for the free energy, one obtains 

1 1 a N Z  
F(m) = --((Z')) = -aN m - -logcosh(pnm). 

Bn 2 Bn 

In the result for the order parameter m, one finds the usual mean-field equation 

m = tanhwnm) (29) 

which gives the transition temperature r f  = n. Therefore at T < Tf (whatever the (non-zero) 
value of 01 is), the system appears to be in the state described by non-zero-order parameter 
m, which is the value of the overlap of the thermodynamic state with all the patterns t e .  The 
point is that, at low temperatures, the patterns, being free to move and tending to become 
as parallel as possible, condense into the state in which all of them have finite components 
parallel to the spin state of the system. Since the number of the patterns is macroscopic 
(EN), the total free energy of the system in this state becomes proportional to N 2  instead 
of N .  This state could be conditionally called SF. 

4.1. 0 c n < 213 

In this case, the qualitative phase diagram of the system is shown in figure 2. The line 
T,(ol) bounds the region where the retrieval state is stable. As usual. this is the line of the 
first-order phase transition. 

Figure 2. Phase dingran of the model with 0 c n c 
213. 

Figure 3. Phase d i a p  of the model with 1 c n c 2. 
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If n is small, the point To(n) at which the line T&) starts at a << 1 ,  behaves as 
To(n) = n + 4exp(-2/n). As n + 213, TO + 1.  

Near the point T = 1, a = 0 for the line T&), one finds the usual behaviour: T,(a) = 
1 - 7(n)&. However, the coefficient 7 ( n )  diverges as n --f 2/3: 7(n)  N (1 - 3 1 ~ / 2 ) - ’ / ~ .  

Therefore, the retrieval region shrinks to the point T = 1, a = 0 as n + 213. 
Besides, everywhere below the second-order transition line Ts&) = 1 +&and above 

Tr there. exists the usual spin-glass state. Solving equation (U), one finds that everywhere 
beyond the region restricted by the line T+&), the replica-symmetric spin-glass solution 
is stable. 

At a >> 1 the asymptotics of both the ‘up’ and ‘down’ branches of the AT line are 
proportional to &. At n << 1 these asymptotics are: T&p’ (1 - 3n/4)&; T p ’  N 

[n/,/-]&. As n -+ nr 0.3, the replica-symmetry breaking region moves to 
infinity and disappears. 

Below the line r f ,  the system is in the SF phase described above. 

4.2. 213 < n  < I  
In this interval of n ,  the phase diagram is similar to that for 0 < n < 213 (figure 2) with 
the only difference being that the retrieval phase is absent here. 

4.3. I < n < 2 

The phase diagram is qualitatively shown in figure 3. Unlike the previous case, two more 
transition lines are present here: Tl(a) and T&), which intersect at a*@). This makes the 
phase structure of the system rather sophisticated. 

In the region marked by P the only stable state is paramagnetic. 
In the region marked by P+ SG* below T, (a), in addition to the paramagnetic state, the 

other stable state with fnite value of q = q*(T, a) appears. 
As the temperature decreases, at T = r f ,  the value of g” becomes equal to one and this 

SG* state turns into the SF one below r f .  Here, in the region P + SF, the paramagnetic phase 
coexists with the SF state. 

Below the Line Ts&) in the region SG + SF the paramagnetic state becomes unstable 
turning into the usual SG state (via second-order phase transition at ?‘so). In this region the 
spin-glass state coexists with the SF state. 

At the line %(a) (in the interval 0 < a < az(n)), the spin-glass state becomes unstable 
and first-order phase transition into the SF state takes place. 

In the region SG + SG” (in the interval al(n) < a < a,(n)), the two spin-glass states 
coexist: the usual SG state which appears via the second-order phase transition at TSG and 
the ‘special’ so* state which appears with finite value q = q*(T, a) below the line Ti, In 
the interval q ( n )  < a < a&) at T = r f ,  the value of g* becomes equal to one and the 
SG* state turns into the SF one. In the interval < a < a,@), at the line %(a), the 
‘usual’ SO state becomes unstable and down to Tf there is only one stable SG state. At 
T = Tf the value of q is becoming one and the second-order phase transition into the SF 
state takes place. 

4.4. n = 2 

In this marginal case, the saddlepoint equations (22) and (23) could be easily reduced to 
one very simple algebraic equation for q 

( (T - ;; - 42 ) q = tanh 
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Figure 4. Phase diagram of the modcl with n = 2. Figure 5. Phase diagram of the model wilh n > 2. 

The solution of this equation gives the phase diagram shown in figure 4. 
Similar to the 1 e n e 2 case, in the region markd by P+ SG' below the line To(a) in 

addition to the paramagnetic state, the other stable SG state withfinire value of q = q*(T,  a) 
appears. 

In the interval 0 c a < 1 at temperature f i  = 2, the value of q* becomes equal to one 
and the SG* state tuns (via a second-order phase transition) into the SF state. In the region 
P + SP, this SF state co-exists with the paramagnetic one. Below the l i e  TSG = 1 + 4, 
the paramagnetic state becomes unstable and the only stable state is the SF one. 

In the interval 1 < a e 3 below the line TSG, the paramagnetic state becomes unstable 
and in the temperature region r f  < T e TSG, the only stahle state is the spin-glass one 
(which has appeared below T&)) with finite value of q. At f i ,  again, the value of q 
becomes equal to one and hclow Tf the system appears to be in the SF state. 

The two lines TO@) and '&(a) meet at a = 3. At a > 3 there is the usual second-order 
phase transition from paramagnetic to SG state at TSG = 1 + 4. 

4.5. n > 2 

The qualitative phase diagram in this case is shown in figure 5. The phase structure here 
is similar to the n = 2 case discussed above and the only difference is that the l i e s  TO@) 
and Tso(a) never now meet. For large a the two lies becomes asymptotically parallel. A 
special point here is that, in the limit n + 2 + 0, the distance between the lines T&) and 
Ts&) turns to zero at all a > 3. 

5. Conclusions 

We have considered the Hopfield model of neural networks in which the patterns, as well 
as the spins, are dynamical variables. The characteristic time scales of the dynamics of 
the spins and the patterns are widely separated. It is assumed that the spins completely 
equilibrate at the time scale at which the elementary changes in the pattems take place. 
It is also assumed that the pattems evolve in a sort of self-consistent field created by the 
spins. We have studied the situation when each kind of the variables thermalizes at different 
temperatures T and T' ,  respectively. 

In the case of a negative value of the temperature T', the model presents some similarities 
with the unlearning training algorithm [7] which is known to increase the storage capacity 
due to a reduction in noisy interference effects among the patterns. We have demonstrated 
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a substantial increase in the size of the retrieval phase in the plane ( T ,  m). In particular, 
at the zero temperature with n finite and negative, the dynamics of the pattems somehow 
pushes them towards mutual orthogonalization and this leads to an increase in capacity from 
the value of 0.14 to 1 [4]. This last value is typical of the ‘pseudoinverse learning d e ’  [9] 
where the patterns are orthogonalized by hand. 

We have also considered the opposite case n z 0 when the patterns move to become as 
parallel as possible. Growing interference among them produces a reduction in the storage 
capacity and for n > 2/3, the retrieval phase was shown to disappear completely. Besides, 
at low enough temperatures (T  < n), the system appears to be in the ‘superferromagnetic’ 
phase in which the overlaps of the thermodynamic state with all the pattems become finite. 
The complete phase diagram of the model in the space of the parameters T, 01 and n 
was obtained. The stability of the obtained replica-symmetric solutions with respect to the 
replica-symmetry breaking was also studied and the corresponding AT lines both at n < 0 
and n > 0 were calculated. 

The principal problem of the present approach is that in neural networks with finite 
replica parameter n = T / T ‘ ,  the slow dynamical variables are the ‘patterns’ and not the 
synaptic couplings themselves (which are constrained to keep the Hebb structure in terms 
of the moving patterns). In this sense, the system considered here (with n negative) is not 
quite adequate for the unlearning procedure. Moreover, the situation here is such that the 
patterns, once they have reached thermal equilibrium, are still free to diffuse and it  is not 
clear what the correlation between the initial patterns one wants to store in the system and 
those found in it for long times is. Therefore, it would be very interesting to formulate 
such a system in which the slow dynamical variables would be the synaptic couplings (and 
not the patterns) which are somehow confined in a subspace keeping memory about truly 
quenched stored patterns. 

Acknowledgments 

The research described in this publication was supported in part by grant N MSROOO from 
the Intemational Science Foundation, and by the INTAS grant N 1010-CT93-0027. 

References 

[I]  Meurd M. Parisi G and Virasoro M A 1987 Spin-Glms Theoq and Beyond (Singapore: World Scientific) 
[2] Penney R W, Coolen T. Shemngton D 1993 J.  Phys. A: Math. Gen. 26 3681 
[3] Sherrington D and Kirkpatrick S 1975 Phys. Rev. Lett. 35 1972 
[4] Dotsenko V, Fmnr S and Mezard M 1994 Partial med ing  and overfrustration in the disordered systems 

151 Hopfield J J 1882 Proe. N d  Aclrd. Sci. USA 79 2554 
[6] Wong K Y M and Sherrington D 1993 Neural networks optimally tmined with nosy data Preprint University 

[i]  Kleinfeld D and Pendergnfi D B 1987 Biophys. J. 51 47 
van H e m e n  I L, loffe L B, Kuhn R and Vaas M 1989 Pkystyu 163A 386 

[8] Amit D. Sompolinsky H and Gutfreund H 1987 Ann. Phy.7. 173 30 
[9] Personaz L, Guyon I and Dsyfus G 1985 J.  Physique Lett. 46 L359 

Kmter I and Sompolinsky H 1987 Phys. Rev. A 35 380 

J.  Phys. A: Moth. Gen. 27 2351 

of Oxford OUTP-93-16s 


